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CHAPTER 1

INTRODUCTION

Studying condensed matter systems is a difficult endeavor because of the com-

plexity associated with the sheer number of atoms in a small piece of matter. The

simplest way to approximate these systems is by assuming the electrons are non-

interacting, and feel a potential that is derived purely from the atomic nuclei. A

very useful result holds if the potential is periodic, for example in the case of a

crystal lattice. Bloch’s theorem states that in the presence of a periodic potential,

the electronic eigenstates of a system take the form u(r)eik·r where u(r) has the

same periodicity as the potential and k is an arbitrary wavevector. Besides giving

us a convenient and simple way to index all the eigenstates, this decomposition

also allows for a computationally feasible way to represent them. Specifically, we

can choose a finite Fourier basis set for the periodic function u(r).

This formulation is still not sufficient to describe real-world materials because

it neglects the correlations and interactions between electrons. This is where the

framework of density-functional theory (DFT) attains its greatest success. DFT

is based on the Nobel Prize-winning work of Kohn and Hohenberg that showed

the ground state energy of a many-electron system depends only on the total den-

sity of electrons [7]. Under this framework, the ground state energy is computed

by minimizing a set of effective one-body Schrödinger equations for each electron

that are coupled to each other by a functional of the total electron density. This

functional incorporates all the non-trivial correlations as well as the effect of ex-

changing identical fermions, and thus bears the name of the exchange-correlation

functional.

By combining DFT with Bloch’s theorem we obtain a powerful way of studying
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the ground state properties of periodic materials. For example, calculations of band

structures and lattice constants are usually quite accurate. With all the success it

has seen, we are left wondering how applicable these techniques are to other kinds of

systems, in particular those without exact periodicity. There are many interesting

systems that fit into this category and equally as many reasons to study them. For

example, high-entropy alloys (HEAs) are materials that have a crystal structure

but are non-periodic because each lattice site is occupied by a random type of atom

[4]. In many instances these materials exhibit desirable physical characteristics.

One application is as electrocatalysts where the existence of many distinct local

configurations of atoms is beneficial because some of those configurations act as

extremely efficient binding sites. We develop perturbation theory techniques to

study responses to non-periodic perturbations as well as optimize high-entropy

alloys by treating each atom as an effective combination of different species.

A different kind of non-periodic system is a layered material. These are made

of two or more 2D lattices that are stacked on top of each other. If the lattice

constants of each layer are not commensurate, the system loses its overall period-

icity. There exist ab-initio techniques to study systems with incompatible lattices,

for example mismatched interface theory (MINT) [5]. We use MINT to develop

a way of computing the electronic structure of a twisted bilayer graphene system.

This material consists of two graphene sheets stacked on top of each other with a

30-degree twist angle between them. There are interesting effects such as mirrored

Dirac cones that make this system a popular subject of research.
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CHAPTER 2

PERTURBATION THEORY FOR EFFECTIVE ATOMS AND

LINEAR RESPONSE

The study of high-entropy alloys begins with an old technique from solid state

physics. The virtual crystal approximation (VCA) was used in early electronic

structure calculations to approximate the properties of periodic systems with dif-

ferent species of atoms in a unit cell. To reduce the computational load, VCA

pretends that each atom is the average of all the atoms in the sense that the

atomic potential is set to the average potential of each of the atoms. Following

this, symmetry can be used to reduce the total number of atoms that need to be

considered in the calculation. With the steep increase in computing power, VCA’s

original necessity has been eliminated. The reason we mention it is that the fun-

damental idea behind it still holds power. It is the assumption that the behavior

of a bunch of different atoms is similar to the behavior of their average.

The new idea of effective atom theory (EAT) is motivated by the fact that a

given group of atoms in a section of a HEA could have every configuration allowed

by the makeup of the HEA. If we want to find a configuration that maximizes some

quantity, such as the binding energy in the case of an electrocatalyst, then we would

have to search through a combinatorially large number of such configurations.

Instead, the solution is actually to enlarge the search space by making each atom

a weighted linear combination of the different species in the HEA. This way, we can

use any continuous optimization algorithm to search through the space to find the

optimal energy solution and discretize the solution to find the configuration that

achieves the maximum possible energy. This requires computing the gradient of

energy in continuous parameter space, which is a problem for perturbation theory.
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2.1 Density-Functional Perturbation Theory

Applying perturbation to density-functional theory involves taking a variational

approach, which we refer to by variational perturbation theory (VPT). DFT itself is

can be formulated variationally because we can think of the ground state solution as

one that extremizes the energy and hence the first derivative of energy is zero when

evaluated at the solution. This allows us to obtain the first order change in energy

easily. Computing the first order change in wavefunctions is more complicated and

requires computation of second derivatives of the total energy. We will discuss

both in the following sections.

2.1.1 First Order Energy Response

The result that allows us to compute the first order response of ground state energy

is the Hellman-Feynman theorem. Let ψ denote the wavefunction of the system,

and define τ as a set of parameters that determine the quantity we wish to perturb

and E(ψ, τ) the total energy which depends on both variables. Then,

d

dτ
E(ψ∗(τ ), τ ) =

∂E

∂ψ

∣∣∣
ψ∗

∂ψ∗(τ )

∂τ
+
∂E

∂τ
(2.1)

where ψ∗(τ ) represents the energy minimizing wavefunction at a given parameter

τ . Because ψ∗ sits at a global minimum of E, then the term ∂E
∂ψ

∣∣∣
ψ∗

must necessarily

be zero and we find

d

dτ
E(ψ∗(τ ), τ ) =

∂E

∂τ
. (2.2)

This result states that the first order change in energy can be computed solely by

taking the derivative with respect to the perturbation itself without any reference

to the wavefunction dependent parts.
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2.1.2 Effective atoms

The first order energy response can now be applied to effective atoms to calculate

the energy gradient used in minimization. Effective atom theory is a potential

works by parameterizing atom species with continuous variables. In algebraic

DFT notation (see appendix), the ion dependent part of the total energy, Eion, is

equal to

(Jn)†Vloc +
∑
k,n,s

wktr(C
†
kVsnkMsV

†
snkCkF ) (2.3)

where k runs over k-points and Vloc, the local part of the pseudopotential, is equal to

Vloc =
∑

n,s (Vloc)sn. The second term in the expression involving VMV † represents

the nonlocal part of the pseudopotential. Here s, n run over the species and atom

numbers, respectively. A mixed atom has a potential that is a linear combination

of different atomic species, weighted by parameters θ. We write the components

of the mixed atom’s potential as

((Vloc)mixed)n =
∑
s

θsn(Vloc)sn, (2.4)

((Vnl)mixed)n =
∑
s

θsnVsnkMsV
†
snk. (2.5)

Optimizing energy over the weights θsn requires finding the gradient of Eion with

respect to the weights. Applying the Hellman-Feynman theorem tells us

dEion
dθsn

=
∂Eion
∂θsn

= (Jn)†(Vloc)sn +
∑
k

wktr(C
†
kVsnkMsV

†
snkCkF ). (2.6)

There is also an additional term involving the change in energy due to the total

number of electrons. Going through the math will yield the extra term

dEion
dθsn

=
∂Eion
∂θsn

+ µ
dN

dθsn
(2.7)

where µ is the chemical potential of the system and N is the total number of

electrons.
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2.1.3 First Order Wavefunction Response

Knowing the response of the ground state wavefunctions to external perturbations

gives us all the information about the linear response of the system. For example,

we can take the perturbed wavefunctions and use them to compute the first order

density perturbation which in turn determines the dielectric response of the system.

Computing the response wavefunctions within the variational method necessarily

involves taking the second derivatives of energy. Let us express the wavefunction ψ

in terms of its basis elements ψi and system parameters τ as the vector τi. Starting

with the fact that ∂E
∂ψ

= 0 at ψ = ψ(τ ), we expand the energy as a second order

Taylor series:

∂E

∂ψj
(ψ + dψ, τ + dτ ) =

∂E(ψ, τ )

∂ψj
+
∂E(ψ, τ )

∂ψiψj
dψi +

∂E(ψ, τ )

∂ταψj
dτα +O(dψdτ).

(2.8)

We also know that ∂E
∂ψj

(ψ, τ ) = ∂E
∂ψj

(ψ+ dψ, τ + dτ ) = 0 because the ground state

wavefunctions must minimize the energy. After dropping the second order terms,

we obtain the equation

∂E

∂ψiψj
dψi +

∂E

∂ταψj
dτα = 0. (2.9)

Note that this equation is linear in dψ and dτ , and solving it for dψ gives first

order change of the ground state wavefunction w.r.t. any kind of perturbation

parameterized by dτ . Since a typical calculation can involve upwards of 106 basis

elements for ψ, it is not feasible to compute the matrix ∂E
∂ψiψj

and invert it directly.

Rather, we must resort to iterative techniques for solving large linear systems

(eg. conjugate gradients). To get a sense for how this works in practice, let us

symbolically write ∂E
∂ψj

as ∇E and the second derivative ∂E
∂ψiψj

as dψ∇E. Similarly,

we write ∂E
∂ταψj

as dτ∇E. Thinking about these linear operators as functions applied
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on vectors the equation looks like

dψ∇E(dψ) = dτ∇E(dτ ). (2.10)

If we have then the algebraic form for ∇E, it possible to analytically take it’s

derivative w.r.t. ψ and τ . Once we have this, applying dψ∇E to a wavefunction

dψ is the same as plugging dψ into the mathematical expression.

2.1.4 ψψ derivative

From now on, instead of the wave functions, we will be working with their un-

constrained expansion coefficients Yk related to the normalized coefficients Ck by

Ck = YkU
−1/2
k and Uk = Y †

kOYk. Computing the second derivative is most easily

done by starting from the first derivative, or the gradient. In algebraic notation

(see appendix), the derivative of energy is written as

∇E =
∑
k

wk[(1−OCkC
†
k)HkCkFU

−1/2
k +OCkQk([H̃k, F ])]. (2.11)

We will now make the assumption that the fillings are scalar, which is true for

semiconducting systems. A discussion of how to generalize these results for non-

uniform fillings is found in the appendix. With this assumption, the term involving

the Q operator drops out. Combining this with the fact that ∇E = 0 at the energy

minimum and Uk = 1 gives us a simple expression for the derivative of ∇E with

respect dY :

dY∇E =
∑
k

wk[dHkCkF −HkdCkF −OCkdH̃kF −OdCkH̃kF ]. (2.12)

Here the symbol d denotes the first order change in a particular quantity with

respect to dY . The quantities dHk, dH̃k and dCk depend linearly on dY . Their
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forms are easily derived from looking at the definitions. The perturbation to the

subspace Hamiltonian is

dH̃k = dC†
kHkCk + C†

kdHkCk + C†
kHkdCk. (2.13)

The change of the orthonormalized wavefunctions are related to the unconstrained

coefficents by

dCk = dYk + YkdU
−1/2
k , (2.14)

dU−1
k = −1

2
(dY †OY + Y †OdY ). (2.15)

Finally, the perturbation to the self-consistent Hamiltonian is

dHk = I†(Diag dVsc)I (2.16)

where

dVsc = −4πJ†OL−1OJdn+ J†OJ Diag[E ′
xc(n)]dn+Diag[E ′

xc(n)]J
†OJdn

+Diag[E ′′
xc(n) · dn]J†OJn,

(2.17)

dn = diag(IdCkFC
†
kI

† + ICkFdC
†
kI

†) = 2Re diag(IdCkFCkI
†), (2.18)

(a · b)i = aibi. (2.19)

These expressions give us a way of applying the operator dψ∇E, to a perturbation

wavefunction dY to obtain the left side of equation 2.9. Having completed this,

we move on to the other second derivative of interest.

2.1.5 ψτ derivative

The process of computing dτ∇E is much simpler as only the Hamiltonian Hk is

directly affected by perturbations. We find that

dτ∇E = dHkCkF −OCkC
†
kdHkCkF, (2.20)
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where

dHk = I†(Diag dVsc)I. (2.21)

The derivative of the potential dVsc depends on the exact type of perturbation. In

the case of perturbations to atomic positions, we must calculate the derivative of

the structure factor Sf (G) =
∑

I e
−iG·XI that contributes a portion of the total

potential Vsc = J† (−4πZ
G2

)
Sf (G). Taking the first differential gives

dSf (G) = −iGje
−iG·Xαj , (2.22)

dVsc = J†
(
−4πZ

G2

)
dSf (G). (2.23)

There are many other kinds of perturbations we can consider. For example, a

perturbation to Vext gives dVsc = dVext. Finally we can also have charge density

and electric field perturbations.

2.1.6 Notes on Implementation

The results of variational perturbation theory have been realized in the JDFTx

software package, which is an open source density-functional theory code designed

for large scale calculations [10]. The implementation of VPT consists of a set

of commands to calculate the response to specific types of perturbations. These

include perturbations to external potential, external charge, electric field, and ionic

positions. Supported features include ultrasoft pseudopotentials, symmetries, and

the majority of exchange-correlation functionals. Support for non-uniform fillings

has yet to be implemented. In terms of performance, VPT is computationally

efficient. The speed of a VPT calculation typically matches or exceeds an electronic

structure calculation for the same system. Furthermore, the advantage of VPT
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over the finite difference method for approximating a derivative is that it is more

accurate and does not require the user to manually adjust parameters such as step

size. Finally, as an example of theory being put into use, a calculation of the

density response of a graphene sheet to a charge perturbation is shown below.

Figure 2.1: Density response for a Gaussian charge perturbation near
graphene sheet.

2.1.7 Convergence Tests for VPT and EAT

To test the validity of density-functional perturbation theory and the correctness

of the derivations, we may choose to compare the derivatives of certain quantities

compared using the analytical methods against a finite difference approximation

of the derivative. In the first test, we started with a Silicon lattice and applied a

periodic perturbation to the external potential. We then computed the expected

response density dn using both VPT and finite difference and compared the two

with different step sizes ∆. The relative difference in the Euclidean norm between

the results of the two methods are shown in (2.2).
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Figure 2.2: Finite difference convergence test of VPT.

Following this, we tested effective atom theory by having the same Silicon

lattice and replacing the two atoms by a mixture of different species. We then

computed the gradient of the total energy analytically and compared it to the

central finite difference approximation computed by shifting the weights slightly

(2.3). Both figures show errors that decrease with decreasing step size, indicating

that the responses computed by VPT and EAT are correct and represent the true

derivatives.

2.2 Incommensurate Perturbation Theory

With VPT working for periodic perturbations, let us turn our attention to the

case when the perturbation has a non-periodic phase attached to it. Consider a
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Figure 2.3: Finite difference convergence test of EAT.

perturbation of the form

dVext = du(r)eiqr. (2.24)

In traditional perturbation theory the change in wavefunctions is given by a sum

over states n′k′:

d|ψnk⟩ =
∑
n′k′

|ψn′k′⟩⟨ψn′k′ |du(r)eiqr|ψnk⟩
Enk − En′k′

. (2.25)

We notice that the numerator most of the time is zero unless the phase accumulated

by |ψnk⟩ after applying an extra eiqr matches the phase of ⟨ψn′k′| up to a reciprocal

lattice vector. That is,

⟨ψn′k′|du(r)eiqr|ψnk⟩ ≠ 0 ⇐⇒ k′ = k + q mod BZ. (2.26)

This suggests that the perturbation to a wavefunction with wavevector k will be

at wavevector k + q. Given this knowledge, we can begin to formulate a way
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of representing these kinds of perturbations in the algebraic DFT notation using

variational perturbation theory. We will start with the fact that a system with an

n × n × n k-point mesh is equivalent to a supercell with n × n × n unit cells at

the Γ point. The ground state wavefunctions C in the supercell can be grouped

according to blocks according to their k-point, and so can the basis elements. This

means the matrix C can be written as a block-diagonal matrix of the form

C =


C11

C22

. . .

 , (2.27)

where Cii is a block corresponding to the wavefunctions Ci in the small calculation

for k-point i. We note that the multiplication rule for two block matrices A,B with

blocks Aij and Bij respectively is the same form as regular matrix multiplication:

(AB)ij =
∑
k

AikBkj. (2.28)

Now, let A and C be block diagonal matrices and let B be an arbitrary matrix

with nonzero blocks. We have

(ABC)ij = AiBijCj, (AC)k = AkCk. (2.29)

These results allow us to pretend like we are working in a large supercell approx-

imation of the true crystal and systematically handle the effects of perturbations

with an attached phase.

2.2.1 ψτ Derivative

Using this block matrix framework, we can derive the second derivatives of energy.

Here it is easier to start with the mixed ψτ derivative. We begin by looking at
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the perturbation stated in the previous section. Because we wish to maintain

the hermitianness of the Hamiltonian, we will require the perturbation to be real,

so the previous perturbation acquires a counterpart in the form of its complex

conjugate to make du(r)eiqr + du∗(r)e−iqr. Now, define the map T+(k) that takes

a wavevector k to the unique vector in the unit reciprocal lattice cell that has the

same Bloch character as k+q, and similarly T−(k) to map to the equivalence class

of k − q such that T+ and T− are inverses of each other. Applying this to the ψτ

derivative, if there is a perturbation to the potential at wavevector q then dH will

have non-zero components dHT+(k)k and dHT−(k)k. Starting from the form of the

second derivative in the case of a single k-point,

dτ∇E = dHCF −OCC†dHCF, (2.30)

we find that the matrix dτ∇E has two sets of non-zero blocks, whose values are

given by

(dτ∇E)T+(k)k = dHT+(k)kCkF −OCT+(k)kC
†
T+(k)kdHT+(k)kCkF, (2.31)

(dτ∇E)T−(k)k = dHT−(k)kCkF −OCT−(k)kC
†
T−(k)kdHT−(k)kCkF. (2.32)

In the next section we will derive what the the expression for dHT±(k)k, applicable

for both kinds of derivatives.

2.2.2 ψψ Derivative

The second derivative with respect to the wavefunctions has more moving parts.

Starting from the expression for the derivative in the case of the periodic potential

dY∇E = dHCF −HdCF −OCdH̃F −OdCH̃F. (2.33)
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To have the two sides of the linear system 2.9 have the same block structure, we

require perturbations to Ck at both k − q and k + q. Hence, CT+(k)k and CT−(k)k

must be non-zero and we have

(dY∇E)T±k = dHT±(k)kCkF −HT±(k)dCT±(k)kF −OCT±(k)dH̃T±(k)kF

−OdCT±(k)kH̃kF.

(2.34)

Now, when we try to expand the wavefunction dC in block matrix form, something

interesting happens. We have

dCT±(k)k = dYT±(k)k + YT±(k)dU
−1/2
T±(k)k. (2.35)

These expressions seem to present an issue. The problem is that the perturbation

to the wavefunction at k should theoretically not depend on the wavefunctions at

k ± q based on the results of perturbation theory, and yet they appear interlinked

in the formulae. This raises the question of what exactly is happening here, and

the answer has to do with orthogonality.

Essentially, if C remains normalized under a perturbation, then (C+dC)†(C+

dC) = 1 =⇒ dC†C+C†dC = 0 and in terms of block matrices the equation reads

(dCkT±(k))
†Ck + C†

T±(k)dCT±(k)k = 0, and this is where the interdependence on the

k + q wavefunctions comes from. To see if there is a way to reframe this problem,

let us start with the idea that the perturbed wavefunctions dC solve the equation

∂2E
∂ψ2 dC = ∂2E

∂ψτ
. If we want to solve this equation in the space of unnormalized

wavefunctions, then we may project the equation into the orthonormal subspace.

The projection operator is P = 1 − OCC† which gives P ∂2E
∂ψ2PdY = ∂2E

∂ψτ
when

applied to the linear system. We will show that P ∂2E
∂ψ2 = ∂2E

∂ψ2 on the orthonormal

subspace where dC†C = 0. This can be seen by expanding

P
∂2E

∂ψ2
dC = (1−OCC†)(−OdCH̃F −OCdH̃F + dHCF +HdCF ) (2.36)
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= −OdCH̃F + dHCF +HdCF +OCC†OdCH̃F

−OCC†dHCF −OCC†HdCF.

(2.37)

We now use dH̃ = dC†HC + C†dHC + C†HdC and the fact that C contains

eigenvectors of the Hamiltonian meaning HC = Cϵ where ϵ is diagonal, hence

dC†HC = dC†Cϵ = 0. This means

P
∂2E

∂ψ2
dC = −OdCH̃F + dHCF +HdCF −OCC†dHCF =

∂2E

∂ψ2
dC. (2.38)

It is also the case that dC = PdY =⇒ dC†C = 0. So, we see solving

P
∂2E

∂ψ2
PdY =

∂2E

∂ψτ
(2.39)

is the same as solving

∂2E

∂ψ2
(PdY ) =

∂2E

∂ψτ
. (2.40)

In our notation we now have

dCT±(k)k = (PdY )T±(k)k = dYT±(k)k −OCT±(k)C
†
T±(k)dYT±(k)k (2.41)

dY∇E = −OdCT±(k)kH̃kF −OCT±(k)C
†
T±(k)dHT±(k)kCkF

+dHT±(k)kCkF +HT±(k)dCT±(k)kF.

(2.42)

This means we still need access to the wavefunctions CT±(k), which can be obtained

via an inexpensive band structure calculation, but their purpose is now clear:

to project out the components of the perturbation in the direction of existing

eigenvectors.

Moving on to the Hamiltonian term in the second derivative, we note that the

electron density n(r) can be written as ψ(r)∗ψ(r) where ψ(r) =
∑
Ckαe

i(k+Gα)·r =

eikr
∑
Ckαe

i(Gα)·r ≡ eikruk(r) and uk is the corresponding periodic part of the wave-

function. We are assuming dψk has two components at T+(k) and T−(k). We will
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label the periodic parts uk and u′k, and thus the total perturbing wavefunction is

eiT+(k)rduk(r)+e
iT−(k)rdu′k(r). The differential of electron density can be expressed

as

dn =
∑

dψ(r)∗ψ(r) + ψ(r)∗dψ(r) (2.43)

= (eiT (k)·rduk(r) + eiT−1(k)·rdu′k(r))uk(r)e
ik·r

+uk(r)eik·r(e
iT (k)·rduk(r) + eiT

−1(k)·rdu′k(r))

(2.44)

=
∑
k,n

[
ei(k−T

−1(k))·rdu′
∗
k(r)uk(r) + ei(T (k)−k)·ru∗k(r)duk(r)

+ei(k−T (k))·rdu∗k(r)uk(r) + ei(T
−1(k)−k)·ru∗k(r)du

′
k(r)

]
.

(2.45)

We notice that the following quantities are all periodic:

ei(k−T
−1(k))·r

eiq·r
,

ei(T (k)−k)·r

eiq·r
,

ei(k−T (k))·r

e−iq·r
,

ei(T
−1(k)−k)·r

e−iq·r
. (2.46)

This means we can rewrite the expression as

=
∑
k,n

[
ei(k−T

−1(k))·r

eiq·r
du′

∗
k(r)uk(r) +

ei(T (k)−k)·r

eiq·r
u∗k(r)duk(r)

]
eiq·r

+

[
ei(k−T (k))·r

e−iq·r
du∗k(r)uk(r) +

ei(T
−1(k)−k)·r

e−iq·r
u∗k(r)du

′
k(r)

]
e−iq·r

(2.47)

In the operator notation, this becomes

(dn)q =
∑
k

diag[Mk−T−1(k)−q(IdCT−(k)k)
†FICk

+M−k+T (k)−q(ICk)
†FIdCT+(k)k]

(2.48)

(dn)−q =
∑
k

diag[Mk−T (k)+q(IdCT+(k)k)
†FICk

+M−k+T−1(k)+q(ICk)
†FIdCT−(k)k]

(2.49)

We now define the M operator to act on real space vectors by multiplying by a

complex exponential:

Mαψ = eiα·r · ψ(r). (2.50)
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We see that the Hamiltonian resulting from this perturbation will have two types

of non-zero components, dHT−(k)k and dHT+(k)k. This is because in the plane-wave

basis, we have

dVsc ∝
[
−4πIL−1Jdn+ E ′

xc(n) · dn+ E ′
xc(n) · dn+ E ′′

xc(n) · dn · n
]

(2.51)

Clearly the perturbing potential dVsc has Bloch characters q and −q. Let dVsc(r) =

v(r)eiqr+v′(r)e−iqr, so that (dVsc)q has periodic part v(r) and (dVsc)−q has periodic

part v′(r). We write

(dVsc)±q = −4πJ†OL−1
±qOJdn±q + J†OJ Diag[E ′

xc(n)]dn±q

+Diag[E ′
xc(n)]J

†OJdn±q +Diag[E ′′
xc(n) · dn±q]J

†OJn.

(2.52)

When we pointwise multiply by a wavefunction ψ(r) = w(r)eik·r with Bloch char-

acter k, we get

v(r)w(r)ei(k+q)·r + v′(r)w(r)ei(k−q)·r. (2.53)

and again, we see that the following are periodic:

ei(k+q)·r

eiT (k)r
,

ei(k−q)·r

eiT−1(k)r
. (2.54)

Therefore, rewriting the expression gives

Diag(dVsc)IC = v(r)w(r)
ei(k+q)·r

eiT (k)r
eiT (k)r + v′(r)w(r)

ei(k−q)·r

eiT−1(k)r
eiT

−1(k)r. (2.55)

Applying the I† operator takes us back to Fourier space, and we see that

(I† Diag(dVsc)IC)T+(k) = I†Mk−T (k)+q Diag((dVsc)q)ICk, (2.56)

(I†Diag(dVsc)IC)T−(k) = I†Mk−T−1(k)−q Diag((dVsc)−q)ICk. (2.57)

Equivalently, we have

dHT+(k)k = I†Mk−T (k)+q Diag((dVsc)q)I, (2.58)

dHT−(k)k = I†Mk−T−1(k)−q Diag((dVsc)−q)I. (2.59)

This provides a way to calculate the response to incommensurate perturbations.
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2.2.3 Summary of Expressions

Instead of labelling the non-zero blocks of dC by their k-point T±(k), we will

imagine that the expansion coefficients actually have the phase k ± q attached

which may differ from T±(k) by a reciprocal lattice vector. This substitution

eliminates the extra phases and gives the following expressions for the ∂2E
∂ψψ

:

(dY∇E)k±q,k = −OdCk±q,kH̃kF −OCk±qC
†
k±qdHk±q,kCkF

+dHk±q,kCkF +Hk±qdCk±q,kF,

(2.60)

(dn)±q =
∑
k

diag [(IdCk∓q,k)
†FICk + (ICk)

†FIdCk±q,k], (2.61)

(dVsc)±q = −4πJ†OL−1
±qOJdn±q + J†OJ Diag[E ′

xc(n)]dn±q

+Diag[E ′
xc(n)]J

†OJdn±q +Diag[E ′′
xc(n) · dn±q]J

†OJn,

(2.62)

dHk±q,k = I†Diag((dVsc)±q)I. (2.63)

For the derivative ∂2E
∂τψ

we find

(dτ∇E)k±q,k = dHk±q,kCkF −OCk±q,kC
†
k±q,kdHk±q,kCkF. (2.64)

2.3 Minimization Algorithms for Incommensurate Pertur-

bations

It was observed during testing that numerical inaccuracies resulting from the pro-

jection operator tends to result in a linear system corresponding to (2.9) that does

not converge extremely well under conjugate gradients. We found that the MIN-

RES algorithm is a more robust way to compute incommensurate perturbations,

and one extra benefit of MINRES is that it can solve indefinite linear systems
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whereas conjugate gradients only works with positive definite systems. Both algo-

rithms are included in the JDFTx implementation of incommensurate perturbation

theory.

2.3.1 Application to dielectric response

This method can be used to calculate responses to non-periodic potentials such as

point charge perturbations when we wish to calculate the dielectric response of a

material. The idea is that any perturbation V (r) can be written as a Fourier sum

V (r) =

∫
Ṽ (q)eiqr ∝

∫
BZ

∑
G

Ṽ (G+ q)ei(G+q)r (2.65)

=

∫
BZ

[∑
G

Ṽ (G+ q)eiGr

]
eiqr. (2.66)

Hence V (r) can be decomposed into a combination of periodic perturbations with

an extra phase factor eiqr, which can be handled by VPT. Let us take a brief

look at the computational complexity of the new technique compared to a simple

supercell calculation. In general, the computational time of a DFT calculation

scales as N3 where N is the number of atoms in the unit cell. If we go to an

n × n × n supercell, we have N = n3 times more atoms and an N3 times cost,

whereas if we do n3 calculations with a q mesh, we have simply N · N cost that

we need to worry about, so we have a factor of N speed up.
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CHAPTER 3

WANNIER FUNCTION BASED THEORY OF

INCOMMENSURATE SYSTEMS

3.1 Introduction

In the past decade or so, there has been an explosion in research studying the

properties of 2D layered materials, which are created by taking single-atom thick

sheets from a larger crystal and stacking two or more of these sheets on top of

one another. Recently, Moiré materials, a specific class of layered materials, have

garnered an especially large amount of attention. These are characterized by two

layers that are rotated relative to one another so that their unit cells no longer

align. If the angle of rotation is small, then the lattices will form interesting large-

scale patterns caused by the relative (mis)alignment of the atoms. The long-range

interactions arising from these Moiré patterns can lead to a host of interesting

and unique effects, including superconductivity, ferromagnetism, and topological

conducting channels [6]. In twisted bilayer graphene (BLG), people have found

additional phenomena such as interaction-induced insulating states and anomalous

quantum hall states [1].

The first models of such systems were built by coming up with a continuum

Hamiltonian description of the layers and their interactions while ignoring the

short-scale atomic structure [2]. The work of Bistritzer and MacDonald showed

using this model that there exist certain “magic angles” at which the velocity

at the Dirac point vanishes leading to a large density of states and counterflow

conductivity. Subsequent works focused on developing better models of twisted

BLG: One such study incorporated ab initio calculations into a tight binding model
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to study the behavior of bands near the fermi level for certain angles [9].

There does exist a limitation to all the studies discussed so far, however, which

is that none of them include self-consistency. If we wish to have a short wavelength,

self-consistent model for mismatched systems incorporating ab initio calculations,

then we can apply mismatched interface theory (MINT), which was recently devel-

oped here at Cornell. MINT works by superposing a small flake of one material on

an infinite lattice of the other and examining the convergence of physical quantities

as the flake size grows to infinity [5]. There are a few drawbacks to this technique

that hamper its usefulness in certain situations. For example, one of the quanti-

ties we are interested in is the momentum resolved density of states (DOS) which

is essentially an unfolding of the band structure. If we compute either the band

structure directly or momentum resolved DOS using Wannier functions, we see a

large number of completely flat bands. This is an effect of flake quantization that

arises because different sides of the flake have no way of communicating with each

other, and is referred to as the flat band problem. An additional barrier is that

computational complexity increases rapidly with an increasing number of atoms.

This makes large flake calculations expensive to perform.

3.2 Ab Initio Tight Binding Models

Creating an ab initio tight binding model involves performing a density-functional

theory calculation of the flake material on an infinite substrate. From this,

maximally-localized Wannier functions are computed from the output of the elec-

tronic structure calculation. The matrix elements of the Wannier Hamiltonian

then be used as the tight-binding Hamiltonian. The issues with this approach are
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the same as the ones mentioned previously. The limits of computational complex-

ity means we can only feasibly perform small flake calculations (∼ 20 flake atoms).

Our group is in the process of developing a technique for overcoming this issue

that involves performing multiple flake calculations for different parts of the flake

material and stitching the resulting Hamiltonians together to effectively model a

very large flake. This technique, which we refer to as MINT Quilt, gives us a

way to efficiently create ab initio tight binding Hamiltonians, however the issue

of flat bands still remains, even in large stitched flake systems. An approach to

solving the flat band problem is by imposing custom boundary conditions on the

flake edges to try and emulate an infinite system. We will discuss both how to im-

pose general constraints and the specific flake boundary conditions in the following

sections.

3.3 Variational Constraints in DFT

When thinking about how to impose constraints in the wavefunctions during min-

imization, it is helpful to look at a constraint that already exists. Consider the

orthonormality requirement for the wavefunctions C. This constraint takes the

form C†C = 1 and it can be enforced introducing a Lagrange multiplier to the

total energy which we denote EDFT. The Lagrangian is written as

L = EDFT +Re tr[Λ†(C†C − 1)] (3.1)

where Λ is an N × N hermitian matrix with each component being a separate

Lagrange multiplier. Now the minimum of EDFT over the set of orthonormal

states is the stationary point of the Lagrangian L. The gradient of the constraint
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function is

d(Re tr[Λ†(C†C − 1)]) = Re tr[Λ†(dC†C + C†dC)] (3.2)

= Re tr[dC†CΛ† + (CΛ†)†dC] = 2Re tr[dC†CΛ†]. (3.3)

Hence, the gradient of the Lagrangian is

∇CL = HC + CΛ†. (3.4)

The gradient must vanish when the wavefunctions minimize energy. Let us denote

the minimizing wavefunctions by C∗. Setting the gradient to zero and multiplying

by C†
∗ gives

C†
∗HC∗ + C†

∗C∗Λ
† = 0 =⇒ Λ† = −C†

∗HC∗. (3.5)

During, we do not know what C∗ is, however if we are close to the minimum, we

can write C = C∗ +∆C where and |∆C|/|C∗| ≪ 1. Therefore, we know what Λ is

approximately:

Λ† = −C†HC +O(|∆C|). (3.6)

Thus,

∇CL ≈ HC − CC†HC ≡ HC − CH̃. (3.7)

At the energy minimum, we can choose to diagonalize H̃ by a unitary rotation of

C, in which case case, Hsub turns into a diagonal matrix ϵ and the equation

∇CL = 0 =⇒ HC = Cϵ (3.8)

is just an eigenvector equation for the columns of C, and this shows that the

Lagrange multipliers turn into the energy eigenvalues ϵ at the minimum. This

corresponds to the equation H|ψi⟩ = ϵi|ψi⟩ in conventional notation.
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3.3.1 Arbitrary constraint

We can apply this same method to enforce a constraint of the type

U †C = 0. (3.9)

As before, we introduce a Lagrange multiplier that goes along with the original

Lagrange Multiplier.

L = EDFT +Re tr[Λ†(C†C − 1)] + 2Re tr[C†UΛU ]. (3.10)

Taking the gradient with respect to wavefunctions gives

∇CL = HC + CΛ† + UΛU (3.11)

We can solve for the Lagrange multipliers in a similar way to the previous part.

Take C∗ to be the ground state wavefunctions. Then

HC∗ + C∗Λ
† + UΛU = 0. (3.12)

Multiplying by C†
∗ still fixes Λ† = −C†

∗HC∗ as we had before. Now, we can instead

multiply by U †. This eliminates the middle term, leaving

(U †U)ΛU = −U †HC∗ =⇒ ΛU = −(U †U)−1U †HC∗. (3.13)

Hence,

∇CL = HC − CHsub − U(U †U)−1U †HC∗. (3.14)

This modification to the energy gradient allows us to perform energy minimization

under an arbitrary constraint. If U is orthonormal and C ≈ C∗ then (U †U)−1 = 1

and the expression simplifies to

∇CL = HC − CH̃ − UU †HC. (3.15)

25



During minimization we can follow the energy gradient while keeping the wavefunc-

tions on both constraint manifolds all the time. For the orthonormality constraint

this is enforced by orthonormalizing the wavefunctions at each step. For the ar-

bitrary constraint, we can do something similar and project out the columns of

U :

C → (1− U(U †U)−1U †)C. (3.16)

Alternatively, if we are solving a tight binding model then we know the entire

matrix of H and we can rewrite the stationary condition as

C∗ϵ = (1− UU †)HC∗. (3.17)

assuming H̃ = ϵ has been diagonalized. We also use the condition that C∗ satisfies

the constraint to rewrite the equation as

C∗ϵ = (1− UU †)H(1− UU †)C∗. (3.18)

This explicitly turns it into an eigenvector problem for the hermitian matrix

(1 − UU †)H(1 − UU †). We can solve it for the ground state and discard all

the eigenvectors that do not satisfy the constraints.

3.3.2 Flake Boundary Conditions

Using the previous result allows us to develop and implement boundary conditions

on the flake. Assume for simplicity that the system contains a one-dimensional

flake with a single Wannier function on the leftmost and rightmost atom which we

call |WL⟩ and |WR⟩ respectively. We furthermore assume that the states of the full

incommensurate system can be described by a Bloch wavevector k. It then follows

that the projection of an eigenstate |ψ⟩ on the rightmost edge should be equal to
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the projection on the left edge, plus an additional Bloch phase. If W is the width

of the flake the wavefunction should acquire the phase eikW hence the condition is

⟨WR|ψ⟩ − eikW ⟨WL|ψ⟩ = 0. (3.19)

This corresponds to the constraint matrix

U = |WR⟩ − e−ikw|WL⟩. (3.20)

We now generalize this boundary condition to a two dimensional rectangular flake.

We imagine copies of the rectangular flake tiling all of space where the left and right

boundaries are identified with each other as well as the top and bottom boundaries.

We then have a set of atom pairs that are supposed to be connected to each other.

Let us label the corresponding Wannier functions by the pairs (|WA
i ⟩, |WB

i ⟩). We

then have N separate constraints

Ui = |WB
i ⟩ − e−ik(x

B
i −xAi )|WA

i ⟩ (3.21)

and the matrix U consists of each constraint stacked together:

U =

[
U1 · · · Un

]
. (3.22)

This boundary condition is intended to connect the flake edges in a natural way

and reduce the quantization effects.

3.4 Preliminary Results for Twisted Bilayer Graphene

We applied the method to bilayer graphene using a tight binding Hamiltonian

constructed with the MINT Quilt method. The flake system under consideration

had a 6 × 6 unit cell graphene flake with 98 atoms, some extra atoms lying on
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the boundary of the flake (see 3.1). We computed a momentum resolved density

of states plot through reciprocal space that passed through the most important

points (3.2). A discussion of the momentum resolved can be found in the appendix.

Now the first thing we notice from the plot is the presence of many flat bands. We

can see the band structure of the tight binding model shows a sharp band coming

from the substrate layer as well as a fuzzy flake band that emerges from the many

flat bands.

Figure 3.1: Graphical depiction of MINT Flake system. (Light green) Sub-
strate unit cell atoms, (Dark purple) Flake atoms, (Arrows) Flake atoms connected
by boundary conditions

We now turn on the boundary conditions and find that the flat bands attain

significant curvature (3.3). In addition the band from the flake is much better

resolved. This indicates that the periodic boundary conditions do help to create

a more sharply defined band structure. One thing we do not see is the mirrored

Dirac cone observed in experiment [11]. This shows that work is still needed to

have this method produce physical results.
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Figure 3.2: Momentum resolved density of states for graphene bilayer
flake system, no boundary conditions applied. k-path goes through BZ of
substrate. Intensity is plotted on a log scale. Red vertical line shows the expected
location of mirrored Dirac cone.

Figure 3.3: Momentum resolved density of states for graphene bilayer
flake system, with periodic boundary conditions. k-path goes through BZ
of substrate. Intensity is plotted on a log scale. Red vertical line shows the expected
location of mirrored Dirac cone.
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CHAPTER 4

CONCLUSION

We have shown that it is possible to adapt existing electronic structure techniques

to calculate properties of non-periodic systems. Starting with the algebraic formu-

lation of DFT, we derived perturbation theory techniques to find the responses of

periodic systems to both periodic and non-periodic perturbations. We also out-

lined a method to optimize high-entropy alloys by replacing atoms with effective

atoms and derived perturbation theory expressions to calculate the gradient of

the free energy with respect to mixing parameters. We demonstrated the validity

of this technique in a couple of simple test systems. Finally, we described a tech-

nique to generate large ab initio tight binding Hamiltonians from DFT calculations

for incommensurate systems. We combined this with specialized flake boundary

conditions to produce a better resolved flake band structure.

There is still work to be done in both variational perturbation theory and

improving the MINT flake boundary conditions. The most important feature yet

to be supported in VPT is solving for perturbations in metallic systems. Here the

fillings are depend on the energy eigenvalues making the gradient more difficult

to compute. Possible approaches for handing variables fillings are discussed in the

appendix. On the other side, the flake boundary conditions are also not perfect.

The band structure plot (3.3) shows what appears to be avoided crossings in the

flake band structure, which ideally should not be present. Improved boundary

conditions should lead to more symmetry between the flake and substrate bands.
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CHAPTER 5

APPENDIX

5.1 Summary of Algebraic DFT Notation [10]

In algebraic DFT notation, all quantities are stored in complex matrices. States

are encoded with a basis set |m⟩, 1 ≤ m ≤ M where M is the total number of

basis elements. Let us now consider an energy minimization problem in which we

minimize the N lowest energy eigenstates. These states |ψn⟩, 1 ≤ n ≤ N can be

thought of as column vectors with length M . The combined state of the system is

stored in an M ×N matrix defined by

Cmn = ⟨m|ψn⟩. (5.1)

We can alternatively think of this as the result of packing all the column vectors

ψi into a single matrix:

C =


↑ ↑

ψ1 . . . ψn

↓ ↓

 . (5.2)

We call C a column bundle. The ground state is given by minimizing the density-

functional energy EDFT(C) over the wavefunctions which includes contributions

from external potentials, exchange-correlation and the Coulomb interaction. As-

suming C is normalized, the energy is given by EDFT = tr(C†HCF ). Here F is

the fillings matrix which contains the number of electrons per state. The gradient

of this energy is given by

∇CEDFT = HCF. (5.3)
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This gradient satisfies the requirement that the inner product of the gradient and

a direction gives the change of the energy in that direction:

dEDFT = 2Re tr[dC†(∇CEDFT)] ≡ ⟨dC†,∇CEDFT⟩ (5.4)

Here 2Re tr is the analog of the dot product, meaning

Re tr(A†B) =
∑
ij

[Re(Aij) Re(Bij) + Im(Aij) Im(Bij)]. (5.5)

If we furthermore impose the condition that the gradient has lie in the tangent

space of the set of orthonormal wavefunctions, then it must be projected:

∇CEDFT = (1−OCC†)HCF. (5.6)

Here O is the overlap operator, proportional to the identity in the plane wave

basis. Now, if fillings are not constant, we have to add an extra term to account

for subspace rotations. Also if the wavefunctions are not normalized, we have to

add a normalization term as well. Unnormalized wavefunctions are represented by

the letter Y and are related to the normalized C coefficients by

C = Y U−1/2 U = Y †OY. (5.7)

In this case the full expression for the gradient with respect to the unnormalized

coefficients with k-points included is

∇YkE = (1−OCkC
†
k)HkCkFU

−1/2
k +OCkQk([H̃k, F ]), (5.8)

where H̃ ≡ C†HC is called the subspace Hamiltonian. The full Hamiltonian H

itself is composed of energy terms coming from the electron-nuclear interaction,

electron-electron, and exchange correlation terms. There is also an external po-

tential term Vext. Explicitly, we write it as

Hk = −1

2
Lk + I†(Diag Vsc)I, (5.9)
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Vsc = J†OJVnuc︸ ︷︷ ︸
nuclear pot.

+ J†Oϕ̂︸ ︷︷ ︸
electronic pot.

+ J†OJExc(n) + Diag[E ′
xc(n)]J

†OJn︸ ︷︷ ︸
exchange-correlation term

+Vext. (5.10)

We also have expressions for the Coulomb potential ϕ̂ and the density n:

ϕ̂ = −4πL−1OJn, (5.11)

n =
∑
k

wk diag(ICkFC
†
kI

†). (5.12)

5.2 Derivative of the Q operator

The Q operator arises when the fillings are fixed but not constant. The derivative

dQ comes into play when we need to take the second derivative of energy. First

we give a formula for QU(A). Let V be the matrix containing the eigenvectors of

U and µ be the corresponding ordered list of eigenvalues. Define the matrix M to

have the components

Mnm =
1

√
µn +

√
µm

. (5.13)

Then,

QU(A) = V [(V †AV ) ·M ]V †, (5.14)

so

d(QU(A)) = dV [(V †AV ) ·M ]V † + dV [(V †AV ) ·M ]dV † (5.15)

+V [(dV †AV + V †dAV + V †AdV ) ·M ]V † + V [(V †AV ) · dM ]V †. (5.16)

Now, we must determine the expressions for the quantities dV and dM which are

related to the first order change in eigenvectors and eigenvalues respectively. We

see from [8] that

dV = V [(V †dUV ) ·N ] Nnm =


1

µm−µn n ̸= m

0 n = m

. (5.17)
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and also by taking a derivative,

dMnm = −1

2

dµn/
√
µn + dµm/

√
µm

(
√
µn +

√
µm)2

, (5.18)

dµn = (V †dUV )nn. (5.19)

There is a special case in which U = 1. Here, V = 1 and all the eigenvalues are

1 so QU(A) =
1
2
A. Also, when calculating d(QU(A)) we see that Nnm is no longer

well defined due to the denominators being zero. This is the same issue that arises

in regular perturbation theory due to degeneracies. The solution in this case is just

to see that we can set V to also be the eigenvectors of dU in which case dV = 0.

Now, it is true that dV = 0 no matter what basis we’re working in, and thus we

can choose V = 1 again. Finally, this means

d(QU(A)) = V [(V †AV ) · dM ]V † +
1

2
dA. (5.20)

We can further simplify this expression to the following form:

−1

8
(dUA+ AdU) +

1

2
dA =

1

2
dA− 1

8
{A, dU}. (5.21)

5.3 Metallic Fillings

Handing metallic fillings is most easily done by introducing a new set of variables

that parameterize the fillings. The JDFTx software uses a matrix called the auxil-

iary Hamiltonian whose eigenvalues map onto the fillings via the smearing function

[3]. Full support of metallic systems would involve taking second derivatives with

respect to both the wavefunctions and the auxiliary Hamiltonian.

34



5.4 Momentum Resolved Density of States

The momentum resolved density of states is a function that tells us about the dis-

tribution of quantum states in the space of energy and momentum. This construct

is useful both because it closely matches the raw data produced by experimental

techniques such as ARPES, and it is defined even when the wavefunctions do not

obey Bloch’s theorem. It is defined as

n(q, ϵ) =
∑
i

∣∣∣∣∫ dr ψi(r)e
−iqrδ(ϵ− ϵi)

∣∣∣∣2 (5.22)

where i labels the eigenstates |ψi⟩ with energies ϵi.
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