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1 Introduction

In general relativity, the goal is often to find solutions to the Einstein field equations and understand
their behavior. Traditionally, people have either sought to find exact solutions to these equations
or used perturbation theory to find approximate solutions around an exact background. In the past
few decades, however, numerical relativity has emerged as an alternative to these two as it able to
give approximate solutions in a wide variety of situations.

The problem with the traditional approaches is that analytic, closed-form solutions are very
hard to come by. Furthermore, these spacetimes are usually highly symmetric and idealized. In
fact, a lot of interesting physics happens when these symmetries are broken. The quintessential
example is, perhaps, the merger of two black holes or neutron stars. In such an event, the period
before the merger can be modelled using the post-Newtonian expansion and the period after can
be described with perturbation theory [4]. What happens right at the point where the two bodies
touch each other cannot be described with either method, but it can be computed using numerical
relativity. We will now briefly touch upon the history of this field.

1.1 History

The reason numerical relativity has produced noteworthy results only relatively recently is partly
due to its reliance on computing power, which has only become abundant in recent decades. The
first numerical calculations were performed in the mid 70’s and 80’s, after which there were few
developments up until the late 90’s. After that, the field started rapidly growing in popularity with
many new techniques being developed. This culminated in the first non-axisymmetric simulation of
a black hole merger through the ringdown phase, performed by Pretorius in 2005. This breakthrough
was a turning point for the field as it demonstrated the first realistic and complete calculation of a
non-trivial system [5]. Now, before diving in to relativity, let us take a detour through the topic of
Maxwell’s equations.

1.2 Maxwell’s equations and constraints

In any coordinate system, the Einstein equations simply become a set of coupled partial differential
equations. We can explore some of the fundamental principles behind finding numerical solutions
by studying another simpler set of PDEs - the Maxwell equations. In the absence of sources, these
equations uniquely determine how the electromagnetic fields of a system evolve in time. In natural
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units they take the form

∇ · E = ρ ∇ ·B = 0 (1)

∂tE = ∇×B − J ∂tB = −∇× E (2)

To numerically solve these equations we first have to discretize spacetime. This means choosing a
finite set of points (ti, xi) to approximate the continuum and approximating derivatives with their
finite difference approximations. Let us suppose the ti are equally spaced with spacing ∆t. Using
the most basic approximation of ∂t for equations (2) gives

E(ti +∆t, xi)− E

∆t
≈ ∇×B(ti, xi)− J(ti, xi) (3)

B(ti +∆t, xi)− E

∆t
≈ −∇× E(ti, xi) (4)

We see that knowing the E and B fields at ti allows us to compute the fields at ti+1 = ti + ∆t.
Solving for E(ti +∆t) and B(ti +∆t) gives us the following update rules:

E(ti +∆t, xi) = E(ti, xi) + ∆t[∇×B(ti, xi)− J(ti, xi)] (5)

B(ti +∆t, xi) = B(ti, xi)−∆t[∇× E(ti, xi)] (6)

where ∇× is now some finite difference approximation to the curl. This rule tells us if we know
the fields at time t0, then we can compute the fields at t1, and then at t2, and so on. It produces a
full numerical solution for all times. Notice, however, that this somewhat crude solution only used
the last two of Maxwell’s equations. We are left with the two instantiations of Gauss’s law that do
seemingly nothing.

One way can explain this is by counting variables. If we break all the vectors down into their
components, then it becomes apparent that there six variables - three electric field and three mag-
netic field components, and eight equations that must be obeyed. Since there are more equations
than variables, the system is overconstrained. What that means is given initial conditions, just six
of the equations is needed to determine the result of the solution. We will call these the evolution
equations because they are sufficient to evolve the fields forward in time. The other two are what
we call constraint equations. It can be shown that if E and B satisfy (2) and satisfy (1) at an initial
time t0, then it will also satisfy (1) for all of t. This is easily seen by taking the time derivative and
integrating.

∂t∇ · E = ∇ · ∂tE = ∇ · ∇ ×B −∇ · J = ∂tρ (7)

=⇒
∫

∂t∇ · E dt =

∫
∂tρ dt =⇒ ∇ · E(t)−∇ · E(t0) = ρ(t)− ρ(t0) (8)

=⇒ ∇ · E = ρ (9)

A similar argument shows ∇ · B = 0. This shows that if a constraint equation is satisfied at some
time, then it will continue to hold if the evolution equations are obeyed. This is certainly true in
theory, but in practice, we will see that in the case of GR, numerical errors will cause the constraint
equations to be violated.

2 ADM Formalism

Moving on to general relativity, we will explore the details of the ADM formalism (Arnowitt, Deser,
and Misner) which forms the basis of many of the popular formulations of numerical GR.
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2.1 3+1 decomposition

We will start by briefly reviewing the 3+1 decomposition of spacetime which we also discussed
in class. Let us make the assumption that the spacetime we wish to model is globally hyperbolic.
There are many equivalent definitions of global hyperbolicity, but the definition we will use here is
that the spacetime manifold is globally hyperbolic if it admits a special type of hypersurface called
a Cauchy surface. A Cauchy surface is just a hypersurface that has exactly one intersection with
every maximally extended timelike or null geodesic. Now, there is an important property of globally
hyperbolic manifolds that we want to utilize. If M is such a manifold, then there exists a function
t : M → R such that the level sets t = C are timelike hypersurfaces which foliate the spacetime.
The utility of this is that we can use t as a “time” coordinate and put spacelike coordinates on the
hypersurfaces, thus decomposing spacetime into space + time.

Let us go into a bit more detail on the coordinate system used in the 3+1 decomposition.
Starting with the t coordinate, we can arbitrarily choose three additional coordinates xi : i = 1, 2, 3
that along with t form the adapted coordinate system. Fixing t, the xi coordinates parameterize
each spatial slice Σ with coordinate vectors ∂xi residing in the tangent space of Σ. We define
a unit normal vector field nµ = ∇µt

|∇µt| , as well as the lapse function α = 1
|∇µt| and the shift vector

βµ = (∂t)
µ−αnµ. Intuitively, the shift vector measures how much shearing there is in the coordinate

system as t increases, in other words it is the difference between the unit normal and the coordinate
t vector. This is depicted in the figure below.

Figure 1: Lapse and shift vectors.

2.2 Math preliminaries

Before we derive the ADM formulation of the Einstein equations, we have to prove a few hypersurface
identities. To begin, let us state the Gauss-Codazzi equations for spacelike hypersurfaces.

Rabcd = R̃abcd −KadKbc +KacKbd (10)

nµRµabc = DcKab −DbKac (11)

Let us take equation (10) and contract the ac and bd indices. We have

R ab
ab = RαβγδP

α
a P

β
b P

γaP δb = Rαβγδ(g
αγ + nαnγ)(gβδ + nβnδ) (12)

= R + 2Rµνn
µnν . (13)

Note that the term Rαβγδn
αnγnβnδ is zero because of the symmetries of the Riemann tensor. We

find that the contracted Gauss equation becomes

R + 2Rµνn
µnν = R̃ +K2 −KµνK

µν . (14)

Next we contract the ac indices in (11). This yields the contracted Codazzi equation

Rbµn
µ ≡ P ν

b Rνµn
µ = DaK

a
b −DbK. (15)
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Finally, the last equation we need requires a lengthy derivation. Here we will skip some details, but
the full derivation can be found in [2]. We start with the Ricci identity along with a result which
we will not prove but can be also found in [2]. They state

∇ν∇σn
µ −∇σ∇νn

µ = Rµ
ρνσn

ρ (16)

∇βnα = −Kαβ −Dα lnαnβ (17)

(Note: The notation may be a bit confusing as α can refer to either the lapse function or an index.
The context should distinguish the two). Using nα∇βnα = 0 and nαKαβ = 0, we find

hµ
αn

ρhν
βn

σRµ
ρνσ = hαµn

σhν
β[−∇ν(K

µ
σ +Dµ lnαnσ) +∇σ(K

µ
ν +Dµ lnαnν))] (18)

= hαµh
ν
β[K

µ
σ∇νn

σ +∇νD
µ lnα + nσ∇σK

µ
ν +Dν lnαDµ lnα] (19)

= −KασK
σ
β +

1

α
DβDαα + hµ

αh
ν
βn

σ∇σKµν (20)

Next, we define mµ = αnµ and consider the Lie derivative of K w.r.t. m. In coordinates, the
definition of Lie derivative states

LmKαβ = mµ∇µKαβ +Kµβ∇αm
µ +Kαµ∇βm

µ (21)

Manipulating this expression a bit and projecting onto the hypersurface yields

LmKαβ = αhµ
αh

ν
βn

σ∇σKµν − 2αKαµK
µ
β . (22)

Plugging this in to (20) will give us the following equation:

hαµn
ρhν

βn
σRµ

ρνσ =
1

N
LmKαβ +

1

α
DαDβα +KαµK

µ
β (23)

Finally, we can combine this with the Gauss equation (10) to get the last necessary identity:

Rab = − 1

α
(∂t − Lβ)Kab −

1

α
DaDbα + R̃ab +KKab − 2KacK

c b (24)

2.3 Decomposition of Einstein equations

At this point we are ready to decompose the Einstein equations into separate components in accor-
dance with the 3+1 decomposition. We start with the basic form of Einstein’s equations without
cosmological constant,

Rµν −
1

2
Rgµν = 8πTµν . (25)

The first step is to project along nµnν . Doing so gives

Rµνn
µnν − 1

2
Rgµνn

µnν = 8πTµνn
µnν (26)

If we recall that gµνn
µnν = −1, we can apply equation (14). Let us also define ρ ≡ Tµνn

µnν , a kind
of “energy density”. This equation becomes

R̃ +K2 −KabK
ab = 16πρ, (27)
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also known as the Hamiltonian constraint. We will see in a moment that this is, indeed, a constraint
equation. Next, we take the mixed projection of (25) onto P µ

a n
ν . The gµνP

µ
a n

ν term vanishes since
P and n are orthogonal. Let us define ja = P µ

a n
νTµν , the mixed projection of the stress-energy

tensor. Using (15) this gives

DaK
a
b −DbK = 8πjb. (28)

This equation is known as the momentum constraint. Now let us take the spatial projection P µ
a P

ν
b .

Defining Sab ≡ P µ
a P

ν
b Tµν , we can apply (24) to get

− 1

α
(∂t − Lβ)Kab −

1

α
DaDbα + R̃ab +KKab − 2KacK

c b − 1

2
Rhab = 8πSab (29)

Now we wish to express R purely in terms of the dynamical quantities h, K, and/or S. This is
done by taking the trace of the Einstein equations which gives −R = 8πT µ

µ = Sa
a − ρ ≡ S− ρ. This

leaves us with the third equation

(∂t − Lβ)Kab = −DaDbα + α(R̃ab +KKab − 2KacK
c b) + 8πα(

1

2
(S − ρ)hab − Sab). (30)

Finally, the last equation is obtained starting with the identity Kab = 1
2
Lnhab and substituting

nµ = 1
α
[(∂t)

µ − βµ]. We obtain

(∂t − Lβ)hab = −2αKab. (31)

Putting all this together, we get the two constraint equations

R̃ +K2 −KabK
ab = 16πρ, (32)

DaK
a
b −DbK = 8πjb. (33)

These must be satisfied at all times for any solution of the Einstein equations. We also get the two
evolution equations

(∂t − Lβ)hab = −2αKab, (34)

(∂t − Lβ)Kab = −DaDbα + α(R̃ab +KKab − 2KacK
c b) + 8πα(

1

2
(S − ρ)hab − Sab). (35)

Let us get a sense for why we have categorized each of these as either constraint or evolution equa-
tions. Starting with the latter two, it can be shown that the Lie derivative Lβ can be expressed

only in terms of spatial derivatives of α and the hypersurface Christoffel symbols Γjk
i (which them-

selves only depend on spatial derivatives of hab) [2]. That means these equations are of the form
∂thab = [. . . ] and ∂tKab = [. . . ] where [. . . ] depends only on the quantities K,h, α, and β at time
t. So, like how we were able to evolve an EM field using two of Maxwell’s equations in section
1.2, so too do the two constraint equations here allow us to compute an entire solution of Ein-
stein’s equations using just an initial slice of data. Analogously, the constraint equations contain no
time derivatives, and if they are satisfied at some t, then they will continue to be satisfied forever
afterwards.

We now have everything we need to solve the equations on a computer. It seems simple - provide
initial data and update the fields using the evolution equations. When this was actually attempted,
however, things went wrong quite quickly. It turns out that small numerical errors caused by
rounding and truncation quickly cause the solution to blow up. The fundamental reason for this
is that ADM is not a well posed system, a fact which was shown in the early 90’s [3]. What this
means is that there may not exist a unique solution that smoothly depends on the initial conditions.
To get around this, people have tried different approaches. In the next two sections we will discuss
two approaches to finding a functional numerical method.
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3 BSSN Formalism

The BSSN (Baumgarte, Shapiro, Shibata and Nakamura) formalism is a modification of ADM
developed in the mid 90’s with the advantage of being a strongly hyperbolic system as opposed to
the weakly hyperbolic nature of ADM. It is derived by first introducing three new variables: First
we define h̃ab = χhab where χ is a conformal rescaling factor that makes det h̃ab = 1. Next, we
define a conformally scaled, traceless version of the extrinsic curvature, Ãab = χ(Kab − 1

3
habK).

Finally, define Γ̃i = h̃abΓ̃i
ab, a contraction of the Christoffel symbols. This comes with two new

constraints. The first constraint is det h̃ab = 1, which obviously must be true by definition. The
second constraint is h̃abÃab = 0 which comes from Ã being traceless. Working through the math
leads to a modified set of evolution and constraint equations that dictate how the fields χ, h̃,K, Ã
and Γ̃ evolve. We will not cover either the derivation nor the resulting equations since they are
quite large and messy, the details can be found in [7]. We will, however, discuss the implications of
this method.

The reason we included BSSN here is that it actually works. When implemented on a computer,
numerical solutions do not blow up. Strong hyperbolicity means solutions are stable, and BSSN
has been used to successfully model black hole mergers without the need for excision [4]. One
downside of BSSN is that it exhibits constraint violation, meaning even if a solution satisfies the
constraints at an initial time, numerical errors will cause gradual loss of constraint satisfaction. The
next section describes a method that does not have this issue. Even so, BSSN is a still relatively
popular technique used in research.

4 Generalized Harmonic Gauge

The generalized harmonic gauge (GHG) aims to solve some of the issues described previously. The
foundations for this method were developed by Garfinkle in 2001 and developed further by Pretorius
in 2004 [1][6].

4.1 Formulation

The way we generalize the standard harmonic gauge condition □xα = 0 is by adding a source term
□xα = Hα. Crucially, we will promote Hα to a dynamical variable which satisfies the constraint
equation Cα = Hα − □xα = 0, and this comes simply from the definition of H. In this case, the
Einstein equations can be rewritten as

1

2
gµν∂µ∂νgαβ = −∂νgµ(α∂β)g

µν − ∂(αHβ) +HµΓ
µ
αβ − Γµ

ναΓ
ν
µβ − 8π(Tµν −

1

2
Tgαβ) (36)

We see that the left side of this equation is just the wave operator applied to gαβ, therefore these
equations are manifestly hyperbolic. This is promising, but in practice we still see the problem of
constraint violation. Numerical errors means Cα may become non-zero even if they are supposed
to be zero.

4.2 Constraint damping

In this case, the constraint violation problem was successfully solved by adding damping terms that
make the violations go away. The damping terms take the form κ[2n(αCβ) − λgαβn

µCµ] where κ
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and λ are constants which control the rate of damping, much like the diffusivity constant in the
heat equation. Added to the Einstein equations, they look like

1

2
gµν∂µ∂νgαβ = −∂νgµ(α∂β)g

µν − ∂(αHβ) +HµΓ
µ
αβ − Γµ

ναΓ
ν
µβ − 8π(Tµν −

1

2
Tgαβ) (37)

−κ[2n(αCβ) − λgαβn
µCµ]. (38)

With this modification, the GHG formulation has seen great success in practice. This method
formed the numerical foundation for Pretorius’s unprecedented calculation of a black hole merger
in 2005. In addition, GHG with constraint damping has been used in the SXS (Simulating eXtreme
Spacetimes) project partly developed here at Cornell.

5 Conclusion

Numerical relativity is an exciting field of research since it has the potential to produce so many
unique and interesting insights. There is still much to be done, with many avenues of research
that haven’t been explored yet. In this paper, we have seen several techniques each with their own
strengths and weaknesses, but we have only covered a fraction of what is out there. The future of
this field seems quite bright. As computers continue to improve in power, it seems likely that we
will discover new things about general relativity that no one has imagined yet.
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