
Relativistic Ray Tracing in Unity

Brandon Li
Department of Physics, Cornell University

(Dated: October 24, 2023)

A fully interactive real-time ray tracing simulation of spacetime manifolds is developed with the
ability to render arbitrary solutions of Einstein’s equations. The Unity engine is used to create an
accessible user interface and combine it with high performance graphics code. The work is applied
to produce images of several spacetimes, including the Schwarzschild and Kerr black holes, and
the Ellis wormhole. The technical and performance considerations of this computer program are
mentioned, including various techniques to improve performance and visual fidelity. Finally, the
educational implications of relativistic ray tracers are discussed.

I. INTRODUCTION

General relativity is one of the most successful physical
theories to have ever existed in the history of science.
First formulated by Albert Einstein 1916, it describes
the gravitational interaction between massive objects and
shows how the trajectories of freely moving bodies arise
from the curvature of space and time. In this theory,
the universe is described as a four-dimensional curved
manifold referred to as a spacetime. The idea is that a
spacetime is a geometric space consisting of a bunch of
points, that when viewed close up, resembles a region of
flat Minkowski space. In Minkowski space, the distance
between two events at points (t, x, y, z) and (t+∆t, x+
∆x, y + ∆y, z + ∆z) is given by ∆s2 = −∆t2 + ∆x2 +
∆y2 + ∆z2 in natural units. This quantity, called the
spacetime interval, is special because its value is identical
in all reference frames. We may think of the spacetime
interval as a function that takes a vector and returns a
number, in which case we write it as

g = −dt2 + dx2 + dy2 + dz2 (1)

where g = g(u, v) is called the metric, and in fact takes
two vectors u and v as input. It is analogous to the
Euclidean dot product as it is symmetric and bilinear
and gives geometrical information about the vectors. The
spacetime interval of the vector u is obtained by plugging
u into both arguments, meaning ∆s2 = g(u, u).
In general relativity, we again have a metric (which

acts like a yardstick and measures local lengths and an-
gles), but now the metric may vary from point to point in
spacetime. This is another way of saying that spacetime
may be curved. What Einstein found was that the cur-
vature at any point in spacetime is directly proportional
to the amount of energy there. In fact, there are many
different kinds of curvature, but in this case, it is the
Einstein tensor Gµν that couples to matter and energy.
The Einstein equation reads

Gµν = Rµν − 1

2
Rgµν = 8πTµν (2)

where Rµν and R are curvature tensors that depend on g
whereas Tµν encodes information about the energy den-
sity and flux. Solving Einstein’s equation gives us a range

of universes with unique shapes and distributions of en-
ergy. A very important example arises when there is no
matter content and Tµν = 0. In this case, if we impose
spherical symmetry and solve for the metric, we find a
family of solutions parameterized by a single variable M :

g = −
(
1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2dθ2 + r2 sin2 θdϕ2.

(3)

This is likely the most famous solution of Einstein’s equa-
tion. It is a non-rotating, uncharged black hole with mass
M . First written down by Karl Schwarzschild immedi-
ately after Einstein published his theory of gravitation,
this spacetime contains many interesting features that
demonstrate non-trivial effects of general relativity. Be-
cause of this, a great deal of attention is usually placed
on the study of Schwarzschild black holes in relativity
courses. We will come back to this solution later on.
Due to the abstract nature of differential geometry,

general relativity can be a difficult subject to understand.
Mastering it requires having both physical intuition and
mathematical proficiency. One way to develop intuition
for any kind of physical phenomenon is to visualize it, and
this is what the subject of this report is about. The goal
of the project was to develop an interactive simulation
of a black hole (and other spacetimes) that the user can
move around in. In total, there were four objectives that
we tried to achieve. First, the simulation should be as
physically accurate as possible. To determine what an
observer sees, the code should compute trajectories of
individual rays of light. Secondly, the user should be able
to interact with the simulation and move around freely.
There should also be an graphical user interface that is
simple and easy to use. Next, the graphics calculations
should run in real time - good performance is important
for maximum user interactivity. Finally, the resulting
simulation should demonstrate aspects of relativity that
would be difficult to convey otherwise. In other words,
the product should be informative or educative in some
way.
To compute what the observer sees, we will use a tech-

nique called ray tracing, in which photon trajectories
are sent out from the observer’s location and propagated
backward in time until they hit something. The point on



2

the screen corresponding to the initial photon direction
is then colored based on the color of the object hit 1.
This works because photon trajectories are time-reversal
symmetric, meaning the same trajectory will describe a
photon that emitted by the object and travels forward in
time until it hits the observer’s eye.

FIG. 1. Schematic depiction of ray tracing. A: Observer with
observer-centric coordinate system. B: Massive object, eg.
black hole. C: Photon trajectories emanating from observer.
D: Background image. The background is spherical image
with a large radius, meaning effectively it is infinitely far away.

To compute these trajectories, we use the geodesic
equation, which describes the paths taken by any kind
of small test object, including photons. Let x(λ) be the
position of a test object parameterized by the variable λ
and let u(λ) = dx

dλ be the coordinate velocity. Then, the
path taken satisfies

duα

dλ
= −Γα

βγu
βuγ . (4)

Here Γα
βγ denote the Christoffel symbols, which encode

how the coordinate system varies from place to place tak-
ing into account curvature, and they are computed from
the metric. We see that the geodesic equation along with
the equation u = dx

dλ form a second order system of ODEs,
which can be solved through Euler integration - the sim-
plest method of solving ODE systems. This gives a sim-
ple way of computing the trajectories of rays of light as
well as any other objects we like.

II. IMPLEMENTATION

Before coding begins, it is necessary to determine the
large scale details of how the project is structured. This
involves choosing a development environment and pro-
gramming language. Since performance was important,
we chose to have the ray tracing code run on the graphics
processing unit (GPU), leaving the rest of the code for the
CPU. This arrangement is the most efficient since GPUs

are optimized to perform many identical computations
in parallel, exactly matching the demands of ray tracing.
The CPU by contrast is much more flexible in the kinds
of computations performed, but is is less parallelizable.
Integrating these two kinds of computing is tricky to

do from scratch and requires a lot of work. Fortunately,
a lot of this work has been done already and there are
many off-the-shelf solutions for making interactive, user-
interface (UI) based software that can run high perfor-
mance code on both the CPU and GPU. For this project,
we picked the Unity engine. It was chosen because of its
ease of use, flexibility, and free cost. The engine is writ-
ten in the C# language, and code for the GPU is written
in HLSL shader language.

FIG. 2. Hierarchy structure of the Unity project.

The relativstic ray tracing project in Unity consists of
a single scene in which the camera and all the UI elements
are placed (Fig. 2). The UI contains all the buttons and
the settings the user can adjust. The camera, on the
other hand, is responsible for rendering a picture to the
screen. Attached to the camera is a custom C# script,
which we call CameraController, that contains a major-
ity of the custom logic used to handle user input, move
the camera around, send data to the GPU, and calculate
the observer’s trajectory. Finally, the graphics shader
GeodesicShader is attached to the CameraController
script and is used for ray tracing.
On each frame the Update method in

CameraController is called. In this function, the
keyboard is first checked to see if any keys are pressed. If
so, the corresponding actions are performed. Next, the
position of the observer is updated using the geodesic
equation. Finally, the updated information is sent to
the shader. Now, a tricky issue that needs to be dealt
with is the manner in which the observer’s orientation
is encoded. Typically, in 3D flat space, the orientation
would be stored as a triplet of numbers representing
pitch, roll, and yaw. Those would then be turned into a
rotation matrix in SO(3), and that gives the orientation.
Here this is not possible since a points on a curved
manifold cannot be arbitrary related to each other via
a linear transformation. Instead, we will bring out
the concept of a local lorentz frame, which is a set of
vectors {x̂, ŷ, ẑ, t̂} at x, the observer’s location, such



3

that g(x̂, x̂) = g(ŷ, ŷ) = g(ẑ, ẑ) = −g(t̂, t̂) = 1 and
g(x̂, ŷ) = g(x̂, ẑ) = · · · = 0. Written in the coordinates
formed from these vectors, the metric g will look like
the metric of flat Minkowksi space. We may then
regard these vectors as the basis vectors for a lorentzian
observer in their own stationary frame of reference. We
will arbitrarily declare x̂, ŷ, ẑ correspond to the forward,
left, and upward axes centered on the observer’s body,
and t̂ is their timelike velocity vector. Then, when the
observer moves around, these four vectors are parallel
transported along the observer’s trajectory. Finally,
since parallel transport preserves the inner product, the
lorentz frame will always remain orthonormal. Now, we
pack these four vectors into the matrix R =

[
t̂ x̂ ŷ ẑ

]
.

Rotations and boosts are performed by multiplying R
on the right by a lorentz transformation: R → RΛ.
Computing the initial velocity for rays of light is done
by specifying a unit spatial direction w = (wx, wy, wz),
turning it into the four vector w⃗ = (1, w) that represents
the photon 4-velocity in the observer frame, and then
converting to the coordinate frame via the multiplication
Rw⃗. With all this math, it is finally possible to allow
the user to move and look around.

III. RESULTS

FIG. 3. Render of Schwarzschild black hole. A: Effect of
gravitational lensing. B: Coordinate artifacts.

The first scenario implemented into the code was the
Schwarzschild black hole in standard spherical coordi-
nates. There are some disadvantages of this specific co-
ordinate system, but the big upside is in its simplicity
which allows for its rapid implementation and testing.
After all the math and coding preparation, we are finally
able to render a picture of the black hole (Fig. 3). Sur-
prisingly, the graphics can run in real time without any
performance issues. Movement and camera panning is
completely smooth, at least when tested on the author’s
laptop. In the picture, we can clearly see the effect of
gravitational lensing. One place this is evident is near
the top of the black hole, where we can see the whites of
the clouds as those photons were initially travelling up-
ward but were bent forward by the spacetime curvature
(Fig. 3, A). The black hole itself is black because photons

that originate within the event horizon will never reach
the observer. There is notably one issue that arises due
to the presence of coordinate singularities. At θ = 0, π,
the metric is not invertible meaning there is a singular-
ity there. This coincides with the visual artifacts in the
image (Fig. 3, B). This can be explained by first ob-
serving that at values of r, the Schwarzschild metric ap-
proaches the Minkowkski metric in spherical coordinates,
−dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2. From this we know
that the singularity at θ = 0, π is not real and is instead
caused by the spherical nature of the coordinate system.
From a calculational standpoint, the visual disturbances

are caused by the Γϕ
θϕ Christoffel symbol blowing up near

the problematic values of θ. Actually, there is another un-
physical singularity at the event horizon radius r = 2M .
This causes problems if the user wishes to go inside the
event horizon.
There are two ways of resolving these issues. One is

to make the integration steps finer near the poles, and
more generally have the step size be smaller near any
kind of singular region. As we will see, this is quite suc-
cessful, but it comes with a performance cost (Table I),
and only remedies the θ singularity. The other solution
is to use a different, singularity-free coordinate system.
In the case of the Schwarzschild black hole, people have
invented many coordinate systems that all describe the
same spacetime. Out of all these coordinate systems,
there is one that eliminates the singularities at both the
poles and the event horizon. Consider the following form
of the Schwarzschild metric deduced by Gullstrand and
Painlevé [1]:

g = −
(
1− 2M

r

)
dt2 + 2

√
2M

r
dt dr (5)

+dr2 + r2dθ2 + r2 sin2 θdϕ2.

If we compute the determinant of the metric, we find that
it stays non-zero for all values of r, so there is no event
horizon singularity. Furthermore, the second line of the
equation is just flat 3D space and can be replaced with
dx2 + dy2 + dz2. We still have the dt dr term to worry
about, but we can use the relation dr = x

r dx + y
r dy +

z
rdz. Using this, we can change to xyz coordinates and
after doing so we find all the coordinate singularities have
disappeared.
After implementing Gullstrand-Painlevé (GP) coordi-

nates, we now find a perfectly uniform sphere (Fig. 4)
upon running the code. Note that performance of these
coordinates is comparable to the standard coordinate sys-
tem (Table I). We can also go inside the event horizon,
unlike before. Upon crossing the event horizon, it seems
as if nothing has changed. The world outside the black
hole is still visible, and this is expected since information
can still flow into the event horizon - it just cannot exit
it. After a short period of time, we hit the singularity
at r = 0, then the simulation stops. If the user tries
to escape from the event horizon by boosting (accelerat-
ing) away, they will find that it is impossible to do so.



4

FIG. 4. Schwarzschild black hole in Gullstrand-Painlevé co-
ordinates.

Whereas this may otherwise have been just a mathemat-
ical fact, with this tool, the user can clearly see why that
is the case.

TABLE I. Performance of different coordinate systems and
computational methods (lower is better).

Coordinate system Adaptive step size Frame time (ms)
Schwarzschild No 8
Schwarzschild Yes 13

Gullstrand-Painlevé No 6
Gullstrand-Painlevé Yes 22

After the Schwarzschild black hole was completed, two
more spacetimes were added. The first was the Kerr met-
ric, which describes a rotating black hole. It contains two
parameters M and a, with M being the mass and a de-
noting the angular momentum per unit mass. We plot
the black hole for two different values of a, one physical
and one unphysical (Fig. 5, 6). The unphysical solu-
tion features a naked singularity, one that is not hidden
within an event horizon.

FIG. 5. Kerr (rotating) black hole for a/M = 0.9.

The other spacetime is the Ellis wormhole, which con-
nects two distinct regions of spacetime that each resemble
a full universe. It is described by the metric

g = dt2 − dr2 − (r2 + l2)(dθ2 + sin2 θdϕ2). (6)

Here the parameter l controls the diameter of the worm-
hole. This wormhole is traversable, which means the user

FIG. 6. Kerr (rotating) black hole for a/M = 10. Solution
features a naked singularity.

is able to freely move from one side to the other (Fig. 7).
We use two different background images for the two sides,
and looking into the wormhole we can get a glimpse into
the other world.

FIG. 7. Ellis wormhole connecting two universes.

IV. DISCUSSION

Because of the decision to use Unity and to run ray
tracing calculations on the GPU, we were able to build
a fully interactive simulation that runs in real time and
combine it with an intuitive user interface. Furthermore,
the rendered image is physically accurate (for the most
part) and corresponds to what a real observer would see if
they went near a black hole. Complete physical accuracy
actually requires one phenomenon that has not been im-
plemented, namely relativistic doppler shift/brightening.
This is where the the color and brightness of an object
changes depending on its velocity. This is the only caveat
to physical accuracy - otherwise everything is fine. Red-
shift for arbitrary moving objects is not easy to calculate,
that is the reason it hasn’t been implemented yet.
Another issue is that it is quite difficult to navigate

around. The biggest reason for this is that there are
no spatial landmarks to for a person to orient themselves
around. Currently, the only point of reference is the back-
ground image, but as it is infinitely far away, its utility
is limited. Ideally, we could place a few objects around
the scene such as orbiting planets. The difficulty is we
would need to modify the ray tracing algorithm to detect



5

collisions with objects. This requires storing the entire
worldline of each face of the object and sending this in-
formation to the shader, which is very complicated, not
to mention the additional performance impact. Develop-
ment of a relativistic ray tracing algorithm may be the
subject of a future work. Adding moving elements or
clocks would also have the benefit of showing the effects
of time dilation. Lastly, putting this simulation into vir-
tual reality might make for an interesting experience.

Currently, due to some of the reasons mentioned above
as well as the general lack of features, our ray tracer is
not very educational. One idea to increase its educa-
tional value is to turn it into a game. In this game, the
user would play as a scientist tasked with the mission
of studying a black hole. They would have to complete
several “quests” and accomplish different tasks related to
the black hole such as getting into orbit, sending a probe

into the event horizon, or taking time dilation measure-
ments, for example. The user would gain points based
on how well the tasks were completed, and in the pro-
cess they would learn about various aspects of general
relativity.

V. CONCLUSION

We have found that it is possible to render a black hole
on a computer in real time. The Unity engine is a good
tool for applications that require both speed and user-
friendliness. With the code we developed, we can gener-
ate beautiful pictures of black holes and other spacetimes.
There is still a lot of work to be done to increase its peda-
gogical effectiveness, but we believe this software has the
potential to be a valuable educational tool and help stu-
dents understand the less intuitive aspects of relativity.

[1] E. Poisson, A Relativist’s Toolkit: The Mathematics
of Black-Hole Mechanics (Cambridge University Press,
2004).

https://doi.org/10.1017/CBO9780511606601
https://doi.org/10.1017/CBO9780511606601

	Relativistic Ray Tracing in Unity
	Abstract
	introduction
	Implementation
	Results
	Discussion
	Conclusion
	References


